skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zheng_郑, Yong_永"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Large Magellanic Cloud (LMC) is home to many Hiiregions, which may lead to significant outflows. We examine the LMC’s multiphase gas (T∼104-5K) in Hi, Sii, Siiv, and Civusing 110 stellar sight lines from the Hubble Space Telescope’s Ultraviolet Legacy Library of Young Stars as Essential Standards program. We develop a continuum fitting algorithm based on the concept of Gaussian process regression and identify reliable LMC interstellar absorption overvhelio= 175–375 km s−1. Our analyses show disk-wide ionized outflows in Siivand Civacross the LMC with bulk velocities of ∣vout, bulk∣ ∼ 20–60 km s−1, which indicates that most of the outflowing mass is gravitationally bound. The outflows’ column densities correlate with the LMC’s star formation rate surface densities (ΣSFR), and the outflows with higher ΣSFRtend to be more ionized. Considering outflows from both sides of the LMC as traced by Civ, we conservatively estimate a total outflow rate of M ̇ out 0.03 M yr 1 and a mass-loading factor ofη≳ 0.15. We compare the LMC’s outflows with those detected in starburst galaxies and simulation predictions, and find a universal scaling relation of v out , bulk Σ SFR 0.23 over a wide range of star-forming conditions (ΣSFR∼ 10−4.5–102Myr−1kpc−2). Lastly, we find that the outflows are corotating with the LMC’s young stellar disk and the velocity field does not seem to be significantly impacted by external forces; we thus speculate on the existence of a bow shock leading the LMC, which may have shielded the outflows from ram pressure as the LMC orbits the Milky Way. 
    more » « less
  2. Abstract Dwarf galaxies are found to have lost most of their metals via feedback processes; however, there still lacks consistent assessment on the retention rate of metals in their circumgalactic medium (CGM). Here we investigate the metal content in the CGM of 45 isolated dwarf galaxies withM*= 106.5–9.5M(M200m= 1010.0–11.5M) using the Hubble Space Telescope/Cosmic Origins Spectrograph. While Hi(Lyα) is ubiquitously detected (89%) within the CGM, we find low detection rates (≈5%–22%) in Cii, Civ, Siii, Siiii, and Siiv, largely consistent with literature values. Assuming these ions form in the cool (T≈ 104K) CGM with photoionization equilibrium, the observed Hiand metal column density profiles can be best explained by an empirical model with low gas density and high volume filling factor. For a typical galaxy withM200m= 1010.9M(median of the sample), our model predicts a cool gas mass ofMCGM,cool∼ 108.4M, corresponding to ∼2% of the galaxy’s baryonic budget. Assuming a metallicity of 0.3 Z, we estimate that the dwarf galaxy’s cool CGM likely harbors ∼10% of the metals ever produced, with the rest either in more ionized states in the CGM or transported to the intergalactic medium. We further examine the EAGLE simulation and show that Hiand low ions may arise from a dense cool medium, while Civarises from a diffuse warmer medium. Our work provides the community with a uniform data set on dwarf galaxies’ CGM that combines our recent observations, additional archival data and literature compilation, which can be used to test various theoretical models of dwarf galaxies. 
    more » « less